Global Bunker Prices
Last update --:-- UTC

Energy Management on Ships

Efficiency, Stability, and Why “Saving Fuel” Can Create Blackouts Introduction — efficiency without context destroys resilience Modern ships are under intense pressure to: Energy management systems promise optimisation. But efficiency-driven operation can quietly erase redundancy, leaving ships fragile under disturbance. Many blackouts occur not because power was unavailable — but because it was intentionally minimised. […]

Shore Power / Cold Ironing

Why Plugging In Is One of the Highest-Risk Electrical Operations on a Ship Introduction — shore power looks simple until it isn’t Cold ironing is often presented as a clean, environmentally friendly upgrade: shut down generators, connect shore power, reduce emissions. In practice, shore connection is one of the most technically complex and failure-prone power […]

Load Shedding, Blackout & Black Start

Why Recovery Time Is More Important Than Protection Accuracy Introduction — blackouts are survivable, if recovery is fast enough Every ship will experience electrical faults in its lifetime. What separates incidents from disasters is not whether a blackout happens, but how quickly control is restored. In confined waters, seconds matter.In open ocean, minutes matter.In bad […]

Power Management Systems (PMS)

Load Sharing — When Generators Fight Each Other Introduction — load sharing is where “healthy” systems quietly kill ships Many vessels lose power without any generator actually failing. Engines run, fuel is clean, cooling is normal — yet the ship blacks out. The cause is often poor load sharing. When generators are paralleled, they must […]

Automatic Voltage Regulators (AVR) & Excitation

Reactive Power, Stability, and the Silent Path to Blackout Introduction — voltage collapse happens before blackouts When ships lose power, crews often focus on engines, breakers, or fuel. In many cases, the first failure occurred electrically, inside the excitation system — long before the blackout. AVR and excitation failures are dangerous because: What excitation actually […]

Marine Generators

Construction, Ratings, and Why “Available Power” Is a Lie Introduction — generators don’t fail suddenly, systems do Marine generators are often treated as rugged, forgiving machines: big diesel engines, heavy alternators, plenty of margin. When a ship blacks out, crews frequently say: “The generator failed.” In reality, generators rarely fail in isolation. What fails is […]

Relay Protection on Ships

This is a drop-in replacement for the earlier version. ⚡ Relay Protection on Ships Functions, Settings, and When “Correct” Trips Kill Ships 4 Introduction — Relays don’t protect equipment, they decide outcomes Relay protection on ships is often taught as a technical subject: functions, ANSI numbers, curves, settings. In reality, relay protection is a decision-making […]

ACB / MCCB / VCB — Selection, Settings & Failure Modes

Why “a breaker is a breaker” is an ETO career-ending belief Introduction — protective devices are life-safety devices Breakers are often discussed as reliability equipment (“stops nuisance trips”, “keeps power on”). That is only half their job. On ships, breakers are also: A breaker that trips too easily is annoying. A breaker that trips too […]

Busbars, Segregation & Internal Arc Behaviour

Why a switchboard is a pressure vessel in disguise Introduction — the switchboard is the ship’s electrical “engine room” On a modern vessel, the main LV switchboard and MCCs are not just distribution hardware. They are the primary fault-energy containment system for the ship. When something goes wrong, your switchboard either (a) contains the event […]

AC vs DC Systems

Why DC quietly causes the most persistent faults onboard Introduction — DC doesn’t trip the way AC does DC systems are often described as “simple” because there is no frequency or phase. In practice, DC is harder to interrupt, harder to detect faults in, and easier to misunderstand. On ships, DC systems power: When DC […]